Zinc protoporphyrin IX binds heme crystals to inhibit the process of crystallization in Plasmodium falciparum.

نویسندگان

  • Jayasree K Iyer
  • Lirong Shi
  • Anuraj H Shankar
  • David J Sullivan
چکیده

The intraerythrocytic Plasmodium falciparum parasite converts most of host hemoglobin heme into a nontoxic heme crystal. Erythrocyte zinc protoporphyrin IX, normally present at 0.5 microM, which is a ratio of 1:40,000 hemes, can elevate 10-fold in some of the anemias associated with malaria disease protection. This work examines a binding mechanism for zinc protoporphyrin IX inhibition of heme crystallization similar to the antimalarial quinolines. Zinc protoporphyrin IX neither forms crystals alone nor extends on preformed heme crystals. Inhibition of both seed heme crystal formation and crystal extension occurs with an inhibitory concentration (IC)50 of 5 microM. Field emission in-lens scanning electron microscopy depicts the transition and inhibition of heme monomer aggregates to heme crystals with and without seeding of preformed hemozoin templates. In vitro zinc protoporphyrin IX, like the quinolines, binds to heme crystals in a saturable, specific, pH, and time-dependent manner. The ratio at saturation is approximately 1 zinc protoporphyrin IX per 250 hemes of the crystal. Unlike the quinolines, zinc protoporphyrin IX binds measurably in the absence of heme. Isolated ring and trophozoite stage parasites have an elevated zinc protoporphyrin IX to heme ratio 6 to 10 times that in the erythrocyte cytosol, which also corresponds to elevated ratios found in heme crystals purified from Plasmodium parasites. This work implicates protection from malaria by a mechanism where elevated zinc protoporphyrin IX in anemic erythrocytes binds to heme crystals to inhibit further crystallization. In endemic malaria areas, severe iron deficiency anemia should be treated with antimalarials along with iron replenishment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

Deconvoluting heme biosynthesis to target blood-stage malaria parasites

Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevul...

متن کامل

Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium falciparum*

Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO p...

متن کامل

Carbon monoxide: a role in carotid body chemoreception.

Carbon monoxide (CO), produced endogenously by heme oxygenase, has been implicated as a neuronal messenger. Carotid bodies are sensory organs that regulate ventilation by responding to alterations of blood oxygen, CO2, and pH. Changes in blood gases are sensed by glomus cells in the carotid body that synapse on afferent terminals of the carotid sinus nerve that projects to respiratory-related n...

متن کامل

Growth of Large Hematin Crystals in Biomimetic Solutions

Hematin crystallization is an essential component of the physiology of malaria parasites. Several antimalarial drugs are believed to inhibit crystallization and expose the parasites to toxic soluble hematin. Hence, understanding the mechanisms of hematin crystal growth and inhibition is crucial for the design of new drugs. A major obstacle to microscopic, spectroscopic, and crystallographic stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular medicine

دوره 9 5-8  شماره 

صفحات  -

تاریخ انتشار 2003